发布时间:2023-03-29 05:56来源:www.sf1369.com作者:宇宇
解:
(1)
(cosθ)^2 =1 / [1+(tanθ)^2] = 0.2
∴原式=[(tanθ)^2 +tanθ-2]*(cosθ)^2=0.8
(2)
证明:
左=[(sinθ)^2]^3 + [(cosθ)^2]^3 +3[(sinθ)^2][(cosθ)^2]
=[(sinθ)^2 + (cosθ)^2][(sinθ)^4 -(sinθ)^2 * (cosθ)^2 +(cosθ)^4]+3[(sinθ)^2][(cosθ)^2]
=(sinθ)^4 -[(sinθ)^2][(cosθ)^2] +(cosθ)^4+3[(sinθ)^2][(cosθ)^2]
=(sinθ)^4 +2[(sinθ)^2][(cosθ)^2] +(cosθ)^4
=[(sinθ)^2 + (cosθ)^2]^2
=1^2
=1
=右
证毕
tan(π/4+α)=1/5
[tan(π/4)+tanα]/[1-tan(π/4)*tanα]=(1+tanα)/(1-tanα)=1/5
tanα=-2/3
cotα=-3/2
(sin2α-sin²α)/(1-cos2α)
=(2sinαcosα-sin²α)/2sin²α
=cotα-1/2
=-2
tan(π+2a)=tan2a=-4/3
y=2^a
>=a=sinx>0
-1<=x<=1
2k$<=x<=2k$+1/2$
$是派